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bstract

A fuel cell’s output power depends nonlinearly on the applied current or voltage, and there exists a unique maximum power point (MPP).
his paper reports a first attempt to trace MPPs by an extremum seeking controller. The locus of MPPs varies nonlinearly with the unpredictable
ariations in the fuel cell’s operation conditions. Thus, a maximum power point tracking (MPPT) controller is needed to continuously deliver the
ighest possible power to the load when variations in operation conditions occur. A two-loop cascade controller with an intermediate converter is
esigned to operate fuel cell power plants at their MPPs. The outer loop uses an adaptive extremum seeking algorithm to estimate the real-time

PP, and then gives the estimated value to the inner loop as the set-point, at which the inner loop forces the fuel cell to operate. The proposed
PPT control system provides a simple and robust control law that can keep the fuel cell working at MPPs in real time. Simulation shows that this

ontrol approach can yield satisfactory results in terms of robustness toward variations in fuel cell operation conditions.
2007 Elsevier B.V. All rights reserved.
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. Introduction

As a clean energy conversion technology, fuel cells are a
romising alternative to a wide variety of power generation
ppliances. Due to its low operating temperature, high power
ensity and fast startup, the proton exchange membrane (PEM)
uel cell power plant is a promising candidate for residential and
ehicular applications. But fuel cells call for large amounts of
nvestment. To minimize the overall system cost, the ability to
xtract the maximal power from a fuel cell is a crucial issue that
ust be considered for the optimal design of a fuel cell powered
ystem [1].
When a fuel cell is directly connected to an external load,

ts output power depends on both the internal electro-chemical
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eaction and the external load impedance. The system’s oper-
ting point is at the intersection of the fuel cell’s I–P curve
nd the load line. There exists a unique operating point, called
he maximum power point (MPP), at which the fuel cell pro-
uces its maximum power, as illustrated in Fig. 1. According
o the power transfer theory, the power delivered to the load
s maximized when the fuel cell internal impedance equals the
oad impedance. As either of the two impedances may vary, the
hances are quite slim that the MPP happens to be the operating
oint. In most cases, it is actually undesirable to operate at the
aximum power, because the corresponding fuel efficiency is

t best 50%. But there are applications where power density is
t a premium as compared with fuel efficiency, and the maxi-
um power point tracking (MPPT) would be beneficial in such

ituations.
Extensive discussions on the fuel cell I–V characteristic,
hich can be found in the literature [2–4], show that the curve
epends strongly on operating parameters in a nonlinear way.
ishra et al. did some valuable work on the manipulation of the

uel cell to attain the MPP. Firstly, they picked out a physics-

mailto:Johnsonzzd@gmail.com
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The amount of hydrogen consumed in the reaction can be
Fig. 1. Typical fuel cell polarization and power curves.

ased model for fuel cell design and optimization [1]. Then,
hey made use of the model-based optimization methodology to
etermine the MPP of the proton exchange membrane (PEM)
uel cell, which is influenced by such operating parameters as
he fuel cell temperature, the anode pressure, the cathode pres-
ure, the relative anode humidity, the relative cathode humidity,
he anode stoichiometry, the cathode stoichiometry, the anode
ry gas mole fraction, and the cathode dry gas mole fraction [5].
n essence, they took an open loop approach. Hence the model
ismatch caused by parametric uncertainties and disturbances

s unavoidable. Also it is very hard to online determine whether
he fuel cell is working at its MPP by measuring so many param-
ters. Most importantly, they neglected the other side of the coin:
he external load.

Benziger et al. [6] noted that previous researchers had over-
ooked a decisive factor in the determination of the MPP, i.e., the
xternal load. By adding a variable load to the base external load
o achieve increased power output, they found that changing the
xternal load impedance was a more effective method to alter the
ower delivery. It is well-known that maximum power occurs
hen the sum of the external impedance, i.e., the variable load

mpedance plus the base load impedance, is equal to the fuel cell
mpedance. Yet as mentioned above, the location of the MPP in
he I–P plane is hard to predict. How to control the variable load
o track the MPP is thus a rather challenging task.

Up to now, few researches on fuel cell MPPT control
ave been reported, but a number of methods have been used
n photovoltaic power applications [7], such as the perturba-
ion and observe (P&O) method, the conductance incremental

ethod, the parasitic capacitance method, the only current
ethod, model-based methods, and artificial intelligence meth-

ds. Among them the P&O algorithm is by far the most
ommonly used in practice because of its ease of implementation
8]. But due to the limitation that P&O exhibits erratic instable
ehavior under rapidly changing environments, the algorithm is

nsuitable for the job of tracking the frequently moving MPP
9].

In this paper, a maximum power point tracking (MPPT) con-
roller is designed, which can be used to adjust the load to the

c

q
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ource impedance so that the equilibrium operating point coin-
ides with the fuel cell’s MPP. In order to operate the fuel cell
t its MPP for every instant, the MPPT controller is made up of
n adaptive feedback extremum seeking algorithm and a switch
ode power regulator. The purpose of the extremum seeking
ethod is to iteratively adjust the fuel cell’s current and thus

teer the operating point to the maximum of the I–P plane which
orresponds to a maximum output power. The power regulator
orces the fuel cell to work with the reference current given by
he extremum seeking algorithm.

Extremum seeking is an adaptive non-linear control method
hich has been used since 1950s, but theoretical foundations

or its stability and performance were established just recently
y Krstic and Wang [10]. The approach enjoys two main advan-
ages when applied to fuel cell MPPT control. Firstly, it does not
equire any prior knowledge of the fuel cell; secondly, according
o the adaptive control law, the MPP will definitely be achieved
hen the control is convergent.
The paper is organized as follows. A dynamic model of PEM

uel cells is presented in Section 2; and in Section 3 an adaptive
PPT controller is designed. In Section 4 extremum seeking is

pplied to the fuel cell power system and simulation results are
iscussed in detail.

. Fuel cell power performance curve analysis

.1. Fuel cell simulation model

.1.1. Dynamic gas transport model
The proportional relationship between the flow of gas through

valve and the partial pressure can be stated as [11]

qH2

PH2

= kan√
MH2

= kH2 (1)

nd

qO2

PO2

= kan√
MO2

= kO2 (2)

here qH2 is molar flow of hydrogen (kmol S−1), PH2 hydrogen
artial pressure (atm), kH2 hydrogen valve molar constant
kmol(atm S)−1), kan anode valve constant (

√
k mol kg

atm s)−1), MH2 molar mass of hydrogen (kg kmol−1).
For hydrogen, the derivative of the partial pressure can be

alculated by using the following perfect gas equation

d

dt
PH2 = RT

Van
(qin

H2
− qout

H2
− qr

H2
) (3)

here R is the universal gas constant ((1 atm) (kmol K)−1)), T
bsolute temperature (K), Van anode volume (1), qin

H2
hydrogen

nput flow (kmol S−1), qout
H2

hydrogen output flow (kmol S−1),
r
H2

hydrogen flow that reacts (kmol S−1).
alculated from the following electrochemical principle:

r
H2

= NI

2F
= 2krI (4)
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here N is the number of the series-wound fuel cells in the
tack, I the stack current (A), F Faraday’s constant (C kmol−1),
r modeling constant (kmol(sA)−1).

When the output flow is replaced by Eq. (1) and the Laplace
ransform is applied to Eqs. (3) and (4), hydrogen partial pressure
an be rewritten in the s domain as:

H2 = 1/kH2

1 + τH2s
(qin

H2
− 2krI) (5)

here

H2 = Van

kH2RT
(6)

By the same means, the equations for oxygen partial pressure
an be derived as:

O2 = 1/kO2

1 + τO2s
(qin

O2
− krI) (7)

here

O2 = Vca

kO2RT
(8)

Eq. (5) describes the relationship between stack current and
ydrogen partial pressure, and Eq. (7) the relationship between
tack current and oxygen partial pressure. As the load draws cur-
ent, the reactants – hydrogen and oxygen – become depleted
n the fuel cell stack, and both partial pressures drop accord-
ngly. To protect the fuel cell plant from reactants starvation,
ommonly excessive amounts of hydrogen and oxygen are pro-
ided for the stack (qin

H2
> 2krI, qin

O2
> krI). A higher excess

atio leads to higher partial pressures, and then a higher fuel
ell voltage. However, too much excess flow is a problem as
t dries out the membrane and consumes much more para-
itic power. Pukrushpan et al. [12] did a high quality study
n how to control the excess ratio. They designed several air
ow controllers to regulate the input flow rate so that it is
lways twice as much as the reaction rate. To focus on the
PPT control problem, this paper will not go into details

n the excess ration control issue but simply supply the fuel
ell with a constant flow rate that is sufficient for consump-
ion.

.1.2. Polarization curve model
The fuel cell voltage as a function of current density in a

teady state can be represented by a polarization curve, which is
nfluenced by such parameters as the cell temperature, oxygen
artial pressure, hydrogen partial pressure and membrane water
ontent. When current is drawn from a fuel cell, the cell voltage
cell decreases from its equilibrium thermodynamic potential
nernst (open circuit voltage). This voltage drop consists of acti-
ation loss ηact, ohmic loss ηohmic and concentration loss ηcon.
he basic expression for the cell voltage is:
cell = Enernst + ηact + ηohmic + ηcon (9)

Reversible thermodynamic potential Enernst is described by
he Nernst equation. With literature values for the standard-state

t
c
b
t

Sources 176 (2008) 259–269 261

ntropy change, the expression is [13]:

nernst = 1.229 − 8.5 × 10−4(T − 298.15) + 4.308

× 10−5T (ln PH2 + 0.5 · ln PO2 ) (10)

Activation overvoltage ηact is described by the Tafel equation,
hich can be expressed as [13]

act = ξ1 + ξ2T + ξ3T ln CO2 + ξ4T ln I (11)

here �(i = 1–4) are parametric coefficients for each cell model.
O2 is the concentration of dissolved oxygen at the gas/liquid

nterface (mol cm−3), which can be calculated by means of

O2 = PO2

(5.08 × 106) × exp(−498/T )
(12)

Ohmic overvoltage ηohmic results from the resistance of the
olymer membrane in electron and proton transfers. It can be
xpressed as

ohmic = −IRm (13)

he ohmic resistance Rm is given by

m = rmtm

A
(14)

here rm is membrane resistivity (� cm) to proton conductivity,
m membrane thickness (cm), A cell active area (cm2). Mem-
rane resistivity depends strongly on membrane humidity and
emperature, and can be described by the following empirical
xpression [14]

m = 181.6
[
1 + 0.03(I/A) + 0.0062(T/303)2(I/A)2.5

][
λm − 0.634 − 3(I/A)

]
exp

[
4.18(T − 303/T )

] (15)

here λm is the membrane water content. The membrane water
ontent is a function of the average water activity am:

m =
{

0.043 + 17.81am − 39.85a2
m + 36a3

m, 0 < am ≤ 1

14 + 1.4(am − 1), 1 < am ≤ 3

(16)

The average water activity is related to the anode water vapor
artial pressure Pv,an and the cathode water vapor partial pres-
ure Pv,ca:

m = 1

2
(aan+aca) = 1

2

Pv,an + Pv,ca

Psat
(17)

The saturation pressure of water Psat can be figured out with
he following empirical expression:

og10Psat = −2.1794 + 0.02953T − 9.1813 × 10−5T 2

+ 1.4454 × 10−7T 3 (18)

The value of λm varies between 0 and 14, which is equivalent

o the relative humidity of 0% and 100%. Under supersaturated
onditions, however, the maximum possible value of λm can
e as high as 23. In addition, λm can also be influenced by
he membrane preparation procedure, the relative humidity of
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This means only 83% of the power potential is used. If the mem-
brane water content increases from 12 to 16, the working point
shifts from A to C, and thus the power rises from 3812 to 4735 W,
97% of the possible maximal 4864 W.
Fig. 2. PEM fuel cell simulation model.

he feed gas, the stoichiometric ratio of the feed gas, and the
ge of the membrane [15]. Hence, in this paper, λm is consid-
red as an adjustable parameter with a possible value between 0
nd 23.

Concentration overvoltage ηcon results from the concen-
ration gradient of reactants as they are consumed in the
eaction. The equation for concentration overvoltage is shown by
16]

con = RT

nF
ln

(
1 − I

iLA

)
(19)

here iL is the limiting current. It denotes the maximum rate at
hich a reactant can be supplied to an electrode.
Combining the dynamic gas transport model and the static

olar curve model together gives birth to a whole fuel cell sim-

lation model, as shown in Fig. 2. The model parameters are
isted in Table 1.

able 1
odel parameters

arameter Value Ref.

(C kmol−1) 96484600
(J kmol−1 K) 8314.47

35 [14]
(cm2) 232 [14]

r = N/4F 9.07 × 10−8

H2 (kmol s−1 atm) 4.22 × 10−5 [11]

O2 (kmol s−1atm) 2.11 × 10−5 [11]

H2 (s) 3.37 [11]

O2 (s) 6.47 [11]

mem (cm) 0.0178 [14]

1 −0.944 [14]

2 0.00354 [14]

3 7.8 × 10−8 [14]

4 −1.96 × 10−4 [14]

L (A cm−2) 2.0 Assumed F
O
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.2. Power performance curve analysis

The output power of the fuel cell stack can be calculated by
he expression

stack = NVcellI (20)

nd the power characteristic of the external load RL is

load = I2RL (21)

As an example, Fig. 3 shows the fuel cell stack power per-
ormance curves when the membrane water content is 12 and
6 and the load is 0.065 � and 0.03 �. The other working con-
itions are the temperature of 70 ◦C, the oxygen pressure of
atm, and the hydrogen pressure of 1 atm. It can be seen clearly

hat:

The operating point is at the intersection of the fuel cell power
curve and the load power curve. Thus the power delivered
takes a unique value based on both the load resistance and the
fuel cell operation parameters.
There exists a unique maximum power point, at which the
fuel cell produces maximum power.

When the membrane water content is 12, fuel cell produces a
aximal power of 3812 W with a load resistance of 0.065 ohm.

f the load resistance is changed to 0.03 ohm, the working point
oves from A to B, and the power drops from 3812 to 3181 W.
ig. 3. The PEM fuel cell power curves under different operation conditions.
xygen pressure and hydrogen pressure are both regulated to 1 atm.
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. Adaptive MPPT controller design

.1. Schematic of the fuel cell MPPT control system

Since the power available from the fuel cell is limited, it is
ecessary to adjust the operation point to settle on or trace the
aximum power points. The majority of fuel cell control lit-

rature is focused on regulating and tracking system states to
nown setpoints or trajectories. Thus the specific MPPs can be
hosen a priori by solving a steady-state optimization problem
ubject to operational constraints. In this way, the optimality of
uch operating policies is completely dependent on the quality
f the fuel cell model. Besides the model mismatch, the fuel cell
peration strongly depends in a nonlinear way on many operat-
ng parameters, some of which are even unmeasurable. Owing
o the uncertainty and time-varying dynamic properties of the
lectrochemical processes, the MPPs chosen a priori will be sub-
ptimal, and can be improved by performing the optimization
n real time. When fuel cell models are not well defined or when
nly limited operation parameter measurements are available, it
s necessary to consider a model-free MPPT control, which is
ble to automatically tune the working point in the right direc-
ion. Fig. 4 shows the schematic of the proposed two-level MPPT
ontrol system.

Changing the fuel cell operating parameters can shift the
orking point, but regulating the external load impedance is
ore effective to locate the MPP. Thus the fuel cell operating

arameters are usually used to maintain good working condi-
ions. An additional power conditioner between the fuel cell and
he load can change the equivalent load impedance. A supervi-
ory MPPT controller functions primarily as an MPP searching

nit, deciding the fuel cell working point. The lower-level DC-
C controller receives commands from the supervisory MPPT

ontroller and then generates detailed control instructions for
he power conditioning circuit.

Fig. 4. Schematic of the fuel cell MPPT control system.
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The current mode power conditioner can efficiently transform
regulated DC output power from a fluctuating fuel cell source
ower to a variable load resistance in an appropriate form. The
onverter with a variable current gain G will result in the fuel
ell seeing an equivalent load resistance.

equ = G2RL (22)

Therefore a feedback MPP tracking algorithm iteratively reg-
lates the fuel cell current with the power conditioner, and the
ower conditioner forces the fuel cell to work at the current by
hifting the equivalent load impedance. When the current coin-
ides with the MPP, the equivalent load impedance matches the
nternal resistance of the fuel cell.

The current in the DC-DC converter is generally controlled
y a switching concept. The power switch MOSFET Q can be
urned on or off in a controlled fashion, and the average cur-
ent is a function of the on-time of the switch, the pulse width,
nd the switching frequency. The most common techniques of
ontrolling a converter are pulse-width modulation [17] and
liding-mode control [18]. The power converter transient can
ettle in milliseconds [19], which is sufficiently brief to be safely
gnored. Thus, the converter can be treated as a direct through
nit which is able to instantaneously regulate the fuel cell current
o commands from the MPP tracing algorithm.

.2. Perturbation and observe (P&O) control algorithm

The fuel cell working point is mainly determined by the super-
isory MPPT control algorithm. Although few discussions on
PPT control for fuel cells can be found, a number of MPPT
ethods have been proposed in photovoltaic power applications.
mong them, the perturbation and observe (P&O) algorithm,

lso known as the “hill climbing” method, is by far the most
ommonly used in practice because of its simplicity in algorithm
nd ease of implementation. The current based P&O algorithm
racks the peak-power current on the basis of the past fuel cell
urrents and powers. Fig. 5 shows the basic form of the P&O
lgorithm. The operating current of the fuel cell is perturbed by
small constant increment, and the resulting change of power,
P, is observed. If �P is positive, then it is supposed that it

as moved the operating point closer to the MPP. In this case,
urther current perturbations in the same direction will move
he operating point toward the MPP. If �P is negative, then the
perating point has moved away from the MPP, and the direc-
ion of perturbation should be reversed to move back toward the

PP.
Many improvements on the P&O algorithm have been pro-

osed. For example, a variable step size of perturbation with the
lope of power as a variable is as follows [20]:

[k + 1] = I[k] + M
�P[k]

�I[k]
(23)
here M is the step-size corrector, and �P[k]/�I[k] denotes
he instantaneous power gradient at the Kth sampling period. In
rder to find the direction of change for maximizing the power,
he P&O method periodically perturbs the operation point of
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consists of two steps: first, it is proved that the MPPT con-
troller can drive the fuel cell from any working point to the
MPP; second, that the MPP is an equilibrium point is proved.
ig. 5. Flowchart of the P&O algorithm. C is the step of the perturbation.

he system. If the sign of power derivative �P and that of volt-
ge derivative �I are the same, the reference current should be
urther increased, and vice versa.

A major problem of the traditional numerically based MPP
ontrol methods is that they are lacking in solid theoretical sup-
ort. As a result, their stability and robustness is hard to analyze
nd may deteriorate in some unfavorable environments. The
&O method, for example, requires the plant dynamics settle
own before optimization. It works well under static conditions
ut exhibits erratic behaviors under rapidly changing conditions.
or instance, an abrupt change in membrane water content will
e followed by an immediate change of power. This leads to
P[k]/�I[k] → ∞ and makes the step size too big, as shown in
q. (23).

.3. Theory of the proposed adaptive MPPT controller for
uel cell systems

Recently, Krstic et al. [10,21] presented a systematic
xtremum-seeking control methodology supported by such
igorous theories as averaging and singular perturbation.
his real-time optimization methodology involves a nonlinear
ynamic system with feedback and adaptation. These features
ender the extremum-seeking-based algorithm more effective
han classical optimization and adaptive control algorithms in

any advanced applications, such as traction maximization in
ntilock braking for a car [22], productivity maximization of a
ontinuous stirred tank bioreactor [23], power reduction max-
mization of a flight [24], pressure rise maximization of an
eroengine compressor [25], autonomous vehicle target tracking
26], and PID tuning [27].

As compared with classical numerically based MPPT

ethods, the extremum-seeking control approach enjoys two

dvantages. Firstly, the optimization problem of power maxi-
ization is explicitly solved by using the dynamic adaptation-

ased feedback control law with sinusoidal perturbation. The
Sources 176 (2008) 259–269

PP is hence guaranteed to be achieved when the control is
onvergent. Secondly, extremum seeking is a nonmodel-based
daptive control method that can be used to find an unknown,
ptimal operating condition for the nonlinear system, where the
onlinearity has a local minimum or maximum. In other words,
ur approach does not require any parameterization or structural
ormalization of the modeling uncertainty.

With the self-optimizing extremum algorithm as the MPPT
ontroller, the control objective is for the fuel cell operating
oint to rapidly trace the MPPs subject to uncertainties and
isturbances from the fuel cell and the external load. A block
iagram for extremum seeking implemented on a fuel cell sys-
em is shown in Fig. 6. Iref is our estimation of the unknown

PP current Imax, at which the fuel cell produces maximum
ower Pmax. a, ω and φ are the amplitude, frequency and phase
hift of the probing signal, respectively. ωh is the cut-off fre-
uency of the high-pass filter. k is the positive adaptive gain of
he integrator. C(s) is the compensator.

For the sake of clarity, this paper only deals with a controller
ith C(s) = 1 and φ = 0, as given in Fig. 7. This controller design

s the simplest form of an extremum-seeking algorithm where
he algorithm does not employ any compensation or demodu-
ator phase shift. Although the MPPT controller appears to be
xtremely simple, the analysis of the scheme is indeed intricate.
he MPPT controller locates the MPP by injecting a small-signal
eriodical sinusoidal perturbation into the current Iref. If the per-
urbation frequency is sufficiently large, the fuel cell will appear
ike a static map and its dynamics do not interfere with the MPPT
ontroller. The small perturbation will create a response of P.
hen the high-pass filter and the integrator are applied to elim-

nate the static component of power and extract the gradient
nformation.

An elementary intuitive verification is given as follows. It
Fig. 6. MPPT controller scheme for the fuel cell system.
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Fig. 7. Variation of the dP/dI on the P–I curve.

The following calculations drive home the point that starting
rom any point (P0, I0) at time t0, the MPPT controller can use the
mall modulated perturbation to determine the slope of the power
ersus current curve and drive the system to the MPP. The power
esponse to the perturbation signal at P0 can be approximated
y the Taylor series

= P0 + P ′(I0 + a sin ωt) + P ′′

2!
(I0 + a sin ωt)2 + · · · (24)

After dropping the second and higher order terms, Eq. (24)
an be rewritten as

= P0 + P ′I0 + aP ′ sin ωt (25)

The MPPT controller applies the high-pass filter s/(s+h) to the
utput power P to eliminate the slowly changing DC component
0 + P′I0:

1

s + h
[P] = aP ′ sin ωt (26)

This signal is then demodulated by multiplication with sin ωt:

= aP ′ sin2 ωt = aP ′

2
− aP ′

2
cos 2ωt (27)

With the initial value of the integrator being I0, the estimated
urrent is

Iref = k

∫
ξdt

= I0 + ka

2
P ′t − kaP ′

2

∫
cos 2ωtdt

(28)

Noting that the second term in Eq. (28) is a high frequency
eriodical signal around zero, which can be attenuated by the
ntegrator, we get
ref = I0 + ka

2
P ′t (29)

As shown in Fig. 7, if the value of I0 is smaller than that of
max, the working point is at the left side of the MPP, and thus
Sources 176 (2008) 259–269 265

′ > 0. The current increment kaP′t/2 is accordingly a positive
alue, and the working point will move to MPP. Contrarily, if I0
s bigger than Imax, the current will decrease to Imax because of
aP′t/2 < 2.

To prove that once the working point arrives at the MPP, the
PPT controller can stabilize the system in the small neighbor-

ood of the MPP, we start with defining the estimation error of
urrent as:

e = Imax − Iref (30)

A well designed MPPT controller should force e to converge
o zero. The fuel cell P(I) function can be approximated in the
eighborhood of the MPP by Taylor series

= Pmax + P ′(I − Imax) + P ′′

2!
(I − Imax)2 + · · · (31)

We also can get

− Imax = I − Iref − Ie = a sin ωt − Ie (32)

With Eq. (32), Eq (31) can be written as

= Pmax + P ′(a sin ωt − Ie) + P ′′

2!
(a sin ωt − Ie)2 + · · ·

(33)

bviously P′ = 0 at the MPP, and by dropping the higher order
erms, Eq. (31) can be rewritten as

= Pmax + 1

2
P ′′(I − Imax)2 (34)

ith Eq. (32), Eq. (34) can be written as

= Pmax + P ′′

2
(a sin ωt − Ie)2

= Pmax + a2P ′′

4
+ P ′′

2
Ie

2

− aP ′′Ie sin ωt − a2P ′′

4
cos 2ωt (35)

Estimation error Ie is a very small value in the neighbor-
ood of the MPP, thus its quadratic term I2

e in Eq. (35) can
e neglected. The MPPT controller applies the high-pass filter
/(s + h) to the output power P to eliminate the slowly changing
C component Pmax + a2P′′/4:

1

s + h
[P] = −aP ′′e sin ωt − a2P ′′

4
cos 2ωt (36)

This signal is then demodulated by multiplication with sin ωt

= −aP ′′Ie sin2 ωt − a2P ′′

4
sin ωt cos 2ωt

a2P ′′ a2P ′′

= −

2
Ie +

2
Ie cos 2ωt

− a2P ′′

8
(sin ωt − sin 3ωt) (37)
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The estimated current is

ref = k

∫
ξdt = −ka2P ′′

2

∫
edt

+
∫ [

a2P ′′

2
e cos 2ωt − a2P ′′

8
(sin ωt − sin 3ωt)

]
dt

(38)

The second term in Eq. (38) can be attenuated by the integra-
or, thus

ref = −ka2P ′′

2

∫
Iedt (39)

Eq. (39) can be rewritten as

˙ref = −ka2P ′′

2
Ie (40)

Because Imax is a constant, we can get İref = −İe from Eq.
30). Thus

˙
e = ka2

2
P ′′Ie (41)

Since P(I) is a convex function with maximum, its second
rder derivative P′′ should be negative, and ka2P′′/2 < 0. Thus
e conclude that Ie → 0, which means that the fuel cell current

onverges to Imax and the MPPT controller drives the output
ower to the neighborhood of Pmax.

According to the theory put forward by Krstic et al. [10], there
xists a ball of initial conditions around the point (I,P,ξ) = (Imax,
max, 0) and constants ω̄, δ̄ and ā such that for all ω ∈ (0, ω̄),
∈ (0, δ̄) and a ∈ (0, ā), the solution (I(t), P(t), ξ(t)) exponen-

ially converges to an O(ω + δ + a)-neighborhood of that point.

.4. Design consideration of the adaptive fuel cell MPPT

ontroller

The choice of the control system parameters affects the sys-
em performance. As we can see from the above analysis, the

t
o

c

Fig. 8. Fuel cell MPPT contro
Sources 176 (2008) 259–269

verall fuel cell MPPT control system should have three time
cales:

fastest—the periodic perturbation,
medium—the high-pass filter,
slow—the fuel cell.

Thus the periodical sinusoidal perturbation signal frequency
and the high-pass filter cut-off frequency ωh are chosen as

ollows:


 ωh 
 dynamic speed of fuel cell with controller (42)

A higher ω can separate the perturbation signal from the fuel
ell dynamic response clearly. But if ω is selected too high, the
onvergence speed will become too slow. Thus, ω should be
elected to the degree that it is just sufficient to satisfy Eq. (42).

The value of Ka2 has a significant effect on the system con-
ergence speed as shown in Eq. (41). A small Ka2 slows down
he convergence. Increasing the adaptation gain k or the pertur-
ation signal amplitude a can improve the tracking speed, but the
ystem will become more sensitive to noise or ripple contents.
herefore a moderate ka2 should be used.

. Simulation results and discussion

The complete fuel cell MPPT control system block diagram
s shown in Fig. 8. The fuel cell is modeled as shown in Fig. 2,
hile the whole MPPT control system is written and tuned by

imulations on the Simulink/Matlab environment. The current
nd power of fuel cell stacks varies with their active area and
umber of cells, and this variation will influence the selection of
ontroller parameters. To enlarge the scope of our research appli-
ation, noting that the current densities and the power densities
f different fuel cells are similar, we design the MPPT con-

roller on the basis of current density and power density instead
f current and power.

It is crucial to note that all of the static or dynamic fuel cell
haracteristics can be unknown. The fuel cell model presented

l system block diagram.
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n Section 2.1 must be viewed as a theoretical benchmark to
llustrate and analyze the efficiency of the proposed MPPT con-
rol approach. Even the black-box neuron network model [28]
r the support vector machine model [29] can also be used here.
t is also to note that a stably operated fuel cell plant needs a
roup of controllers. In addition to the excess ratio controller
entioned earlier, water and heat subsystems also need to be

roperly controlled. In the following simulations, it is assumed
hat they have already been well controlled.

The basic simulation conditions of the fuel cell are: hydro-
en input flow of 8 × 10−5 kmol s−1, oxygen input flow of
× 10−5kmol s−1, cell temperature of 70 ◦C and membrane
ater content of 14. The parameters of the MPPT control system

re: a = 5, ω = 2π, k = 14 and ωh = π.
Fig. 9 shows the fuel cell MPPT control system’s responses

o step changes of the membrane water content. It is important
o understand that these abrupt changes of the membrane water
ontent are for testing the dynamic response of the MPPT control
ystem, and do not necessarily represent changes in a real world
ase. The membrane water content abruptly changes from 8 to
2 at the 100th second, from 12 to 16 at the 150th second and
rom 16 back to 12 at the 200th second, as shown in Fig. 9a. The
orresponding MPPs also move from point A to B, from B to C
nd then from C back to B, as shown in Fig. 10a.

Figs. 9 and 10 show that the MPPT controller can steadily
rive the system to the new MPP when an abrupt change of the
PP occurs. For example, when the membrane water content

bruptly changes from 8 to 12 at the 100th second, the fuel cell
perating point immediately shifts to point A′, and the MPP
hifts to point B′. If the P&O algorithm governed by Eq. (23) is
sed, the step change of power from point A to A′ will lead to
P[k]/�I[k] → ∞, and then the P&O algorithm will collapse.
he MPPT controller, however, can converge to the maximum
ower point B smoothly, as shown in Fig. 9f and 10b.

The movement from point B′ to B is caused by the couple
etween current and oxygen/hydrogen pressures, as described
y Eqs. (5) and (7). When the current rises, the depletion of
he reactant gases increases, and the gas pressures decrease, as
hown in Fig. 9d and e. And when the reactant pressures change,
he location of the MPP changes accordingly, as described in
ection 2.1.2. Strictly speaking, the membrane water content and

he fuel cell temperature both vary with current. When current is
hanged to seek the MPP, the location of the MPP changes cor-
espondingly. But the MPPT control system is robust enough to
race the locus of MPPs until the equilibrium point B is reached.

Fig. 11 shows the fuel cell MPPT control system’s ramp
esponse to the temperature. The fuel cell temperature rises
rom 20 to 90 ◦C at the rate of 0.1 ◦C s−1. When the temper-
ture changes from 20 to 90 ◦C, the MPP moves from Point A to
. The MPPT control system traces the theoretical MPP locus
t the same time. The tracing error is mainly caused by the slow
hange of the gas pressures.

Although this MPPT controller leads to a forced oscillation

urrent, it achieves a very low power oscillation around the MPP.

periodical perturbation current of asin ωt is injected to the
uel cell current. This leads to a ripple power, whose amplitude
epends on the relative location of the operation point to the

p
t
f
r

ig. 9. Responses of the MPPT controller to the step changes of membrane water
ontent: (a) step changes of membrane water content; (b) responses of current
ensity; (c) responses of cell voltage; (d) responses of hydrogen pressure; (e)
esponses of oxygen pressure; (f) responses of power density.

PP. The power oscillation amplitude can be approximated by

ower amplitude = dP

dI
× a (43)

As mentioned earlier, dP/dI → 0 at the MPP. Thus the power
mplitude will converge to zero at the MPP. Fig. 10b shows that
he power ripple becomes lower and lower when the operation

oint gets close to MPP B. Fig. 12 gives a clearer picture when
he operation point is very close to MPP B. The current ripple
actor in Fig. 12a is about 1%, but the corresponding power
ipple factor is only 0.02% as shown in Fig. 12b.
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Fig. 10. Power responses in phase plan of power density versus current density: (a) power density responses in I–P plan; (b) oscillations nearby point B. Dot lines
are the polar curves at different membrane water contents.

Fig. 11. Response of the MPPT controller to the ramp change of temperature: (a) pow
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Fig. 12. Ripples of Fuel cell MPPT control system.

. Conclusion
A modeling, control, and simulation study of the fuel cell
PPT control system is reported in this paper. Firstly, a the-

retical analysis of the power curve characteristic of the fuel
ell is made. The fuel cell has a unique MPP, at which it pro-

R

er density responses in time domain; (b) power density responses in I–P plan.

uces maximum power. The location of the MPP is decided by
uel cell operation conditions in a nonlinear way. Due to the
omplexity of the electrochemical process, however, it is hard
o predict whether the fuel cell is working at the MPP by a

odeling approach.
Therefore, an adaptive MPPT controller using the extremum-

eeking algorithm is designed to automatically keep the fuel cell
orking at the MPP all the time. The controller is based on solid
ynamic adaptive control theories. The MPP is guaranteed to
e achieved when the control is convergent. Also, this MPPT
ontroller is a model-free method which does not require any
rior knowledge of the fuel cell. The validity of the proposed
uel cell MPPT control scheme over a large operating range was
erified through simulations in the MATLAB/Simulink envi-
onment. Simulation results show that the system can respond
apidly to abrupt changes of operation conditions.

The proposed control scheme can not only trace the MPP but
lso online solve other fuel cell optimization problems, such as
aximize efficiency or combination of various objectives. We

xpect that it can be used in a large scope.
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